CASE DESCRIPTION

- 23-month-old boy presented to ED with vomiting & altered mentation, following ingestion of an unknown amount of 325 mg ferrous sulfate tablets.
- Initial bloodwork
 - Serum iron 23,300 = µg/dL ~ 6.5 hours post-ingestion
 - Anemia, thrombocytopenia, & coagulopathy
 - High anion gap metabolic acidosis
 - Clinical deterioration → lethargy, tachycardia, & poor perfusion
 - Tracheal intubation for airway protection
 - Initiation of vasoactive infusions for worsening hemodynamics
 - Blood transfusions for coagulopathy & active hemorrhage
- Iron toxicity management
 - Deferoxamine infusion titrated as tolerated by blood pressure
 - CVVHD initiated to expedite iron removal
- Despite massive transfusion administration, he was unable to be stabilized & maintained on ECMO support
- Blood transfusions for coagulopathy & active hemorrhage
- Tracheal intubation for airway protection
- Iron overload management
 - Intravenous deferoxamine is the antidote for serious iron toxicity
 - Serum iron concentration
 - Our patient’s case is unique, given the exceptionally high serum iron concentration
 - Upon literature review, there have not been previously reported serum iron concentrations approaching that of our patient’s
 - Intravenous deferoxamine is the antidote for severe iron toxicity
 - Chelating agent forming water-soluble ferrioxamine for renal excretion
 - Hypotension secondary to histamine release may occur
 - In this case, the deferoxamine infusion dose was limited due to refractory shock & cardiovascular collapse
- Despite aggressive therapies & resuscitation, this patient could not be stabilized even on extracorporeal support

PREVENTION AND ADVOCACY

- 1997: The FDA mandates display warnings, blister packaging, & restrictions on container quantity
- 2003: FDA mandate legally overturned.
- Prenatal vitamins in the home have been recognized as a significant risk factor
- Pediatricians must advocate for patient/family education regarding poisonings associated with prenatal vitamins, especially toddlers who have infant-age siblings.

REFERENCES

- Dr. Matthew Smith, M.D., Stephen N. Epps, M.D., Matthew Malone, M.D., Thomas Fiedorek, M.D., Erica Liebelt, M.D., Brenda Crawford, M.D., Ronald Sanders, M.S., M.D., Sanjiv Pasala, M.D.
- Department of Pediatric Critical Care Medicine, Pediatrics, Nephrology, and Pharmacology-Toxicology
- Arkansas Children’s Hospital, University of Arkansas for Medical Sciences, Little Rock, AR

DISCUSSION

- We propose early initiation of ECMO for life-threatening iron ingestions
- Allows for more aggressive deferoxamine titration
- Earlier hemodilution in the clinical course
- The risks of worsening coagulopathy must be weighed with bleeding complications
- Extracorporeal methods of iron removal are only capable of eliminating free-circulating iron, so these methods are not useful once intracellular iron transport has occurred
- Extracorporeal support may be useful in managing severe iron toxicity in patients on ECMO with stable hemodynamics
- It is imperative that these procedures are initiated early following the ingestion, before refractory shock ensues
- Literature is lacking in iron toxicity reports & management experience
- More importantly, it is crucial to advocate for preventative measures

CONCLUSION

- There is a paucity of literature to support management of severe iron toxicity, efficacy of exchange transfusion, or renal replacement therapy
- Our patient’s case is unique, given the exceptionally high serum iron concentration
- Upon literature review, there have not been previously reported serum iron concentrations approaching that of our patient’s
- Intravenous deferoxamine is the antidote for severe iron toxicity
- Chelating agent forming water-soluble ferrioxamine for renal excretion
- Hypotension secondary to histamine release may occur
- In this case, the deferoxamine infusion dose was limited due to refractory shock & cardiovascular collapse
- Despite aggressive therapies & resuscitation, this patient could not be stabilized even on extracorporeal support

DISCLOSURES

- Dr. Matthew Smith, M.D., Stephen N. Epps, M.D., Matthew Malone, M.D., Thomas Fiedorek, M.D., Erica Liebelt, M.D., Brenda Crawford, M.D., Ronald Sanders, M.S., M.D., Sanjiv Pasala, M.D.
- Department of Pediatric Critical Care Medicine, Pediatrics, Nephrology, and Pharmacology-Toxicology
- Arkansas Children’s Hospital, University of Arkansas for Medical Sciences, Little Rock, AR

- No federal funding.
- All other authors have no financial relationships to disclose.