State of the Neonatologist Workforce

Anisha Bhatia, MD
Chair, AAP Trainees and Early Career Neonatologists Co-PI AAP Pediatric Workforce Survey of Sections - Neonatology
April 28 ${ }^{\text {th }}, 2022$

Disclosures

I have no financial disclosures or conflicts of interest to discuss

Today's Topics for Review

- 2021 AAP Section on Neonatal Perinatal Medicine Workforce Survey
- A Look at Five Self-Identified Career Paths Among Neonatologists
- A Gender Effect: Comparison of Gender Across Three Career Phases of a Neonatologist
- Assessment of the 2020 COVID-19 Pandemic: Impact on the United States Neonatologist Workforce
- 2020 AAP Trainees and Early Career Neonatologists Survey
- New AAP SoNPM Special Interest Groups

AAP Survey of Sections

- The mission of the Survey on Sections is to define the broad dimensions of the pediatric workforce to achieve equity and access to care for infants, children, and adolescents
- This mission is attained through periodic data collection that informs the Committee on Pediatric Workforce and other AAP Sections, Councils, and Committees

Purpose

- The ideal framework for neonatologist work hours remains unclear
- Recent literature demonstrates high work hour and productivity expectations of neonatologists disproportionate to other pediatric subspecialists ${ }^{1,2,3,4}$
- Elucidating underlying factors and facilitating professional advocacy for neonatologists is the primary purpose of this work
1.Mercurio MR. Neonatology's race to the bottom: RVUs, cFTEs, and physician time. J Perinatol. 2021;41(10):2561-2563.

2. Lakshminrusimha S, Olsen SL, Lubarsky DA. Behavioral economics in neonatology-balancing provider wellness and departmental finances. J Perinatol. 2022:1-6.
3. Machut KZ, Kushnir A, Oji-Mmuo CN, et al. The Effect of COVID-19 on the Workload of Neonatologists. J Pediatr. 2021
4. Horowitz E, Feldman HA, Savich R. Neonatologist salary: factors, equity and gender. J Perinatol. 2019;39(3):359-365.

2021 AAP Section

 on NeonatalPerinatal Medicine Workforce SurveyA Look at Five Self-Identified Career Paths Among Neonatologists

Objective \#1:

- The objective of this analysis was to characterize selfidentified career paths among neonatologists
- Five different career path definitions and associated professional duties were assessed:
- Clinician - Direct patient care
- Administrator/leader - Practice leadership role/service role within an organization
- Clinician-Educator - Clinical education of trainees or colleagues
- Clinical Expert - Protocol development, publishing of book chapters/area of expertise
- Physician-Scientist - Basic scientist/clinical trialist, health outcomes/services, or public health researcher

Hypothesis

- Career types within neonatology have distinctly different profiles of relative effort in the domains of clinical work, scholarly effort, administrative responsibilities, total time effort, and compensation

Methods

- The AAP conducted a voluntary anonymous survey of all board-certified and board eligible United States neonatologists from July to November 2021.
- 2113 of surveyed neonatologists responded
- Response rate: 30\%
- Bivariate cross-sectional comparisons were performed using t-test of means and Wilcoxon test of medians, using JMP 16.1.0 by SAS (Cary, NC)
- We analyzed responses from the subset of 1204 neonatologists who selfidentified with one of five career paths
- Clinician was used as the reference for all comparisons

Results: Respondent Characteristics

Table 1: Respondent Characteristics

Sample Size	1204
Clinician:	711 (59\%)
Administrative/Leadership:	205 (17\%)
Clinical Educator:	89 (7\%)
Clinical Expert:	64 (5\%)
Physician Scientist:	135 (11\%)
On Academic Track (Yes)	835 (69\%)
Gender Identity	
Male	486 (41\%)
Female	671 (57\%)
Ethnic and Racial Identity	
Hispanic/Latinx	92 (8\%)
Asian	193 (16\%)
Native Hawaiian/Pacific Islander	3 (0\%)
Black/African American	47 (4\%)
Middle Eastern/North African	23 (2\%)
American Indian/Alaska Native	3 (0\%)
White	838 (72\%)
Other	31 (3\%)
Declined to respond	61 (5\%)

Age	
$31-35$	$81(7 \%)$
$36-40$	$181(16 \%)$
$41-45$	$184(16 \%)$
$46-50$	$166(14 \%)$
$51-55$	$131(11 \%)$
$56-60$	$128(11 \%)$
$61-65$	$119(10 \%)$
$66-70$	$96(8 \%)$
Medical School	United States
Canada	$920(78 \%)$
Caribbean	$34(3 \%)$
Other	$214(18 \%)$

AAP Membership	
AAP onlv	106 (9\%)
Both AAP and SONPM	$968(81 \%)$
Neither the AAP nor SONPM	$128(11 \%)$
AAP District Location	
District I	$79(7 \%)$
District II	$79(7 \%)$
District III	$122(10 \%)$
District IV	$118(10 \%)$
District V	$95(8 \%)$
District VI	$162(14 \%)$
District VII	$146(13 \%)$
District VIII	$130(11 \%)$
District IX	$116(10 \%)$
District X	$117(10 \%)$

Results: Clinical Work Across Career Pathways

Clinicians reported the highest calculated clinical hours: 1728 hrs (IQR 1072-2304 hrs, p<0.001) and highest call numbers (p<0.001)

Clinical Educators \& Clinical Experts
reported the highest median
outpatient days ($\mathbf{3 0}$ days; $\mathrm{p}=\mathbf{0 . 0 1 2 ;}$
$\mathrm{p}=0.01$, respectively)

		Clinician	Administrative	p-value	Clinical Educator	p-value	Clinical Expert	p-value	Physician Scientist	p-value
		$\mathrm{n}=711$	$\mathrm{n}=205$		$\mathrm{n}=89$		$\mathrm{n}=64$		$\mathrm{n}=135$	
	Weekday	90 (50-120)	65 (40-95.75)	<0.001	80 (58.75-100)	NS	75 (52.5-100)	NS	50 (35-70)	<0.001
	Weeknight	32.5 (19.5-52)	$24(10-33)$	<0.001	25 (15-36)	NS	24 (19-37)	NS	20 (10.75-30)	<0.001
	Weekend day	24 (15-34)	$18(12-26)$	<0.001	$21(12-26)$	NS	24 (13.75-30.5)	NS	16 (12-24)	<0.001
	Weekend nights	15 (10-24)	12 (6-15)	<0.001	12 (8-15)	0.037	12 (8-16)	NS	12 (7-13)	<0.001
	Clinical Hours	1728 (1072-2304)	1134 (653.5-1652)	<0.001	1298.5 (915-1874.75)	0.007	1394 (968-1772.5)	NS	1031.5 (602.5-1412)	<0.001
	Home Call Coverage	60 (30-120)	45 (24-79)	0.001	45 (27.25-66)	NS	50 (28.5-63)	NS	30 (24-50)	<0.001
	Average Daily Census									
	Critical Care	$5(3-10)$	$10(5-12)$	<0.001	$10(5-15)$	<0.001	10 (4.75-10)	NS	$10(6-14)$	<0.001
	Intensive Care	$9(5-12)$	$10(5-12)$	NS	$10(5-15)$	NS	$8(5-10.25)$	NS	10 (5-10.5)	NS
	Non-Critical Care	$0(0-4)$	$0(0-4)$	NS	0 (0-5)	NS	0 (0-4)	NS	0 (0-4)	NS
	Normal Newborn	0 (0-5)	0 (0-0)	<0.001	0 (0-0)	<0.001	0 (0-0)	0.009	0 (0-0)	<0.001
	Total Rounding Census	$20(15-28)$	$20(16-25)$	NS	22 (17-30)	NS	$20(16-25)$	NS	$20(18-25)$	NS
	Level of Principal Nursery									
	Level 4	212 (30\%)	116 (58\%)	<0.001	62 (70\%)	<0.001	43 (69\%)	<0.001	101 (78\%)	<0.001
	Level 3	415 (59\%)	73 (37\%)	<0.001	23 (26\%)	<0.001	13 (21\%)	<0.001	27 (21\%)	<0.001
	Level 2	74 (10\%)	10 (5\%)	0.018	0 (0\%)	<0.001	3 (5\%)	NS	2 (2\%)	<0.001
	Level 1	7 (1\%)	1 (1\%)	NS	3 (3\%)	NS	3 (5\%)	0.04	0 (0\%)	NS
	Have Outpatient Duties (Yes)	117 (17\%)	39 (19\%)	NS	23 (26\%)	NS	15 (24\%)	NS	23 (17\%)	NS
	Outpatient Days	12 (6-27)	20 (10-40)	NS	30 (15-60)	0.012	30 (12-100)	0.01	16.5 (9.5-29.25)	NS

Clinicians were more likely to work within level 3 NICUs ($p<0.001$) compared to all other career pathways

Physician Scientists reported the lowest clinical work hours: 1031.5 (IQR 602.5-

1412 hrs; p<0.001)

Results: Scholarly Work Across Career Pathways

Administrators engaged in more research and were more likely to hold full professorship (p<0.001)

		Clinician	Administrative	p-value	Clinical Educator	p-value	Clinical Expert	p-value	Physician Scientist	p-value
		$\mathrm{n}=711$	$\mathrm{n}=205$		$\mathrm{n}=89$		$\mathrm{n}=64$		$\mathrm{n}=135$	
	Engage in Research (Yes)	203 (29\%)	121 (60\%)	<0.001	59 (67\%)	<0.001	48 (75\%)	<0.001	131 (98\%)	<0.001
	Annual Funding	$\begin{gathered} \$ 0 \\ (\$ 0-\$ 10,000) \\ \hline \end{gathered}$	$\begin{gathered} \$ 22,500 \\ (\$ 0-\$ 200,000) \end{gathered}$	<0.001	$\begin{gathered} \$ 11,500 \\ (\$ 0-\$ 46,250) \\ \hline \end{gathered}$	0.012	$\begin{gathered} \$ 10,000 \\ (\$ 0-\$ 75,000) \\ \hline \end{gathered}$	0.028	$\begin{gathered} \$ 150,000 \\ (\$ 50,000-\$ 437,500) \end{gathered}$	<0.001
	Applied for Grants this past year (Y	28 (13\%)	33 (27\%)	0.022	16 (28\%)	NS	19 (40\%)	<0.001	93 (71\%)	<0.001
	Number of Applications	2 (1-2)	2 (1-3.25)	NS	1 (1-4.5)	NS	2 (1-3)	NS	2 (2-4)	0.015
	Scholarly Productivity									
	Total Principal Authorship	$2(1-5)$	$8(2-25)$	<0.001	3 (2-10)	0.004	6 (2-15)	<0.001	13 (6-39)	<0.001
	Presentations	3 (2-6)	5 (2-10)	0.002	6 (3-12)	<0.001	$4(2-10)$	NS	5 (3-8.25)	<0.001
	Active in Medical Education (Yes)	446 (63\%)	164 (80\%)	<0.001	83 (94\%)	<0.001	52 (81\%)	0.008	93 (69\%)	NS
	Fellowship Program Director (Yes)	20 (4\%)	25 (15\%)	<0.001	29 (35\%)	<0.001	4 (8\%)	NS	12 (13\%)	NS
	Education (weeks)	4 (1-12)	7.5 (2-15)	0.017	11 (4-20)	<0.001	8 (4-11)	NS	4 (2-12)	NS
	Academic Appointment									
	No	295 (41\%)	28 (14\%)	<0.001	6 (7\%)	<0.001	6 (9\%)	<0.001	2 (1\%)	<0.001
	Yes (not tenure)	367 (52\%)	123 (60\%)	0.039	68 (76\%)	<0.001	54 (84\%)	<0.001	71 (53\%)	NS
	Yes (tenure track)	28 (4\%)	50 (24\%)	<0.001	12 (13\%)	<0.001	4 (6\%)	NS	58 (43\%)	<0.001
	Academic Rank									
	Instructor	36 (9\%)	5 (3\%)	0.008	2 (3\%)	0.044	1 (2\%)	NS	10 (8\%)	NS
	Assistant professor	196 (50\%)	32 (19\%)	<0.001	37 (46\%)	NS	20 (34\%)	0.035	39 (30\%)	<0.001
	Associate professor	91 (23\%)	44 (25\%)	NS	23 (29\%)	NS	20 (34\%)	NS	36 (28\%)	NS
	Full professor	34 (9\%)	83 (48\%)	<0.001	17 (21\%)	0.002	15 (26\%)	<0.001	41 (32\%)	<0.001
	Adjunct	24 (6\%)	5 (3\%)	NS	0 (0\%)	0.021	2 (3\%)	NS	1 (1\%)	0.015

Clinical Educators \& Experts engaged in more research and held higher academic rank ($p<0.001$)

Physician Scientists held the highest intramural funding, principal authorships, and were more likely to be on tenure track with higher academic rank ($p<0.001$)

Results: Administrative Duties Across Career Pathways

Clinicians were least likely to hold leadership roles. For those engaged in leadership, medical/program directors was the most common role ($p<0.001$)					Physician Scientists who were engaged in leader more likely to serve as medical/program director					
							$\checkmark 7$			
			Administrative	p -value	Clinical Educator	p -value	Clinical Expert	p-value	Physician Scientist	p -value
		$\mathrm{n}=711$	$\mathrm{n}=205$		n= 89		$\mathrm{n}=64$		$\mathrm{n}=135$	
000O	Administrative Time (Weeks)	6(2-12)	24 (10-40)	<0.001	8(3.5-15.5)	NS	10 (4-20)	NS	5(3-17.5)	NS
	Internal Leadership Roles									
	Chair, Institutional Committee	40 (6\%)	34 (17\%)	<0.001	4 (5\%)	NS	1 (2\%)	NS	7 (6\%)	NS
	Medical/Program Director	234 (34\%)	101 (50\%)	<0.001	35 (41\%)	NS	26 (43\%)	NS	17 (13\%)	<0.001
	Division Chief	36 (5\%)	48 (24\%)	<0.001	3 (3\%)	NS	7 (11\%)	NS	16 (13\%)	<0.001
	Department Chair	25 (4\%)	15 (7\%)	NS	1 (1\%)	NS	0 (0\%)	NS	2 (2\%)	NS
	None	301 (43\%)	9 (4\%)	<0.001	21 (24\%)	NS	20 (33\%)	0.001	49 (39\%)	NS
	External Leadership Roles									
	State Committee Chair	10 (1\%)	9 (5\%)	NS	1 (1\%)	NS	5 (8\%)	0.009	4 (3\%)	NS
	National Committee Chair	10 (1\%)	18 (9\%)	<0.001	6 (7\%)	NS	5 (8\%)	NS	17 (13\%)	<0.001
	Inter-Institutional Collab Director	7 (1\%)	5 (3\%)	NS	1 (1\%)	NS	3 (5\%)	NS	3 (2\%)	NS
	International Collab Chair	0 (0\%)	4 (2\%)	0.005	0 (0\%)	NS	1 (2\%)	NS	2 (2\%)	NS
	None	502 (74\%)	67 (34\%)	<0.001	40 (48\%)	<0.001	32 (51\%)	<0.001	56 (43\%)	<0.001

Administrators had more protected time and I were more likely to serve in leadership as division r chief or chair of a national committee ($p<0.001$)

Results: Compensation Across Career Pathways

Administrators reported the highest median base salary (NS), administrative stipend ($p<0.001$), and total calculated cash compensation ($\mathrm{p}<0.005$)

Clinical Experts received lower total calculated compensation ($\mathrm{p}=0.043$)

		Clinician	Administrative	p-value	Clinical Educator	p-value	Clinical Expert	p-value	Physician Scientist	p-value
		$\mathrm{n}=711$	$\mathrm{n}=205$		$\mathrm{n}=89$		$\mathrm{n}=64$		$\mathrm{n}=135$	
	Employment Status									
	Employee	583 (82\%)	184 (90\%)	0.012	84 (94\%)	0.006	61 (95\%)	0.013	131 (98\%)	<0.001
	Full/Part owner	51 (7\%)	9 (4\%)	NS	2 (2\%)	NS	2 (3\%)	NS	1 (1\%)	0.013
	Contractor	78 (11\%)	12 (6\%)	NS	2 (2\%)	0.017	1 (2\%)	0.032	0 (0\%)	<0.001
	Other Employment Type	17 (2\%)	2 (1\%)	NS	1 (1\%)	NS	1 (2\%)	NS	2 (1\%)	NS
	Work Part-Time (Yes)	87 (12\%)	24 (12\%)	NS	9 (10\%)	NS	6 (9\%)	NS	11 (8\%)	NS
	Cash Compensation									
	Base Compensation	$\begin{gathered} \$ 250,000 \\ (\$ 215,000-\$ 310,000) \\ \hline \end{gathered}$	$\begin{gathered} \$ 270,000 \\ (\$ 220,000-\$ 326,250) \\ \hline \end{gathered}$	NS	$\begin{gathered} \$ 217,000 \\ (\$ 180,000-\$ 258,750) \\ \hline \end{gathered}$	<0.001	$\begin{gathered} \$ 235,000 \\ (\$ 214,500-\$ 275,000) \\ \hline \end{gathered}$	NS	$\begin{gathered} \hline \$ 230,000 \\ (\$ 188,171-\$ 277,500) \\ \hline \end{gathered}$	<0.001
	Administrative stipend	$\begin{gathered} \$ 15,000 \\ (\$ 5,000-\$ 30,000) \end{gathered}$	$\begin{gathered} \$ 30,000 \\ (\$ 14,700-\$ 55,000) \end{gathered}$	<0.001	$\begin{gathered} \$ 5,000 \\ (\$ 2,000-\$ 12,500) \end{gathered}$	0.042	$\begin{gathered} \$ 3,000 \\ (\$ 1,750-\$ 22,500) \end{gathered}$	NS	$\begin{gathered} \$ 7,500 \\ (\$ 2,375-\$ 27,750) \end{gathered}$	NS
	Extra duty earnings	$\begin{gathered} \$ 20,000 \\ (\$ 10,000-\$ 50,000) \end{gathered}$	$\begin{gathered} \$ 25,000 \\ (\$ 10,050-\$ 50,000) \end{gathered}$	NS	$\begin{gathered} \$ 25,000 \\ (\$ 8,000-\$ 40,000) \end{gathered}$	NS	$\begin{gathered} \$ 12,000 \\ (\$ 6,000-\$ 40,000) \end{gathered}$	NS	$\begin{gathered} \$ 16,500 \\ (\$ 5,000-\$ 36,000) \end{gathered}$	NS
	Productivity incentive	$\begin{gathered} \$ 30,000 \\ (\$ 10,000-\$ 86,250) \end{gathered}$	$\begin{gathered} \$ 21,000 \\ (\$ 10,000-\$ 66,500) \end{gathered}$	NS	$\begin{gathered} \$ 10,000 \\ (\$ 4,500-\$ 20,000) \end{gathered}$	<0.001	$\begin{gathered} \$ 7,000 \\ (\$ 3,500-\$ 21,500) \end{gathered}$	0.007	$\begin{gathered} \$ 10,000 \\ (\$ 7,000-\$ 30,000) \end{gathered}$	0.011
	Quality incentive	$\begin{gathered} \$ 14,000 \\ (\$ 5,250-\$ 25,000) \end{gathered}$	$\begin{gathered} \$ 10,000 \\ (\$ 5,000-\$ 36,250) \end{gathered}$	NS	$\begin{gathered} \$ 7,000 \\ (\$ 4,250-\$ 10,000) \end{gathered}$	NS	$\begin{gathered} \$ 4,500 \\ (\$ 2,625-\$ 9,750) \\ \hline \end{gathered}$	NS	$\begin{gathered} \$ 10,000 \\ (\$ 3,500-\$ 25,500) \end{gathered}$	NS
	Research incentive	$\begin{gathered} \$ 15,000 \\ (\$ 10,000-\$ 20,000) \end{gathered}$	$\begin{gathered} \$ 2,000 \\ (\$ 1,850-\$ 19,298) \end{gathered}$	NS	$\begin{gathered} \$ 2,500 \\ (\$ 76-\$ 21,250) \end{gathered}$	NS	$\begin{gathered} \$ 3,245 \\ (\$ 500-\$ 5,000) \end{gathered}$	NS	$\begin{gathered} \$ 9,500 \\ (\$ 5,000-\$ 32,500) \end{gathered}$	NS
	Total Cash Compensation (summed)	$\begin{gathered} \$ 295,000 \\ (\$ 224,500-\$ 360,000) \end{gathered}$	$\begin{gathered} \$ 311,850 \\ (\$ 252,625-\$ 425,500) \\ \hline \end{gathered}$	0.005	$\begin{gathered} \$ 240,000 \\ (\$ 198,000-\$ 274,000) \\ \hline \end{gathered}$	<0.001	$\begin{gathered} \$ 245,500 \\ (\$ 226,000-\$ 290,000) \\ \hline \end{gathered}$	0.043	$\begin{gathered} \$ 252,000 \\ (\$ 202,500-\$ 301,250) \\ \hline \end{gathered}$	<0.001

Results: Breakdown of Time Across Career Pathways

Clinicians were less likely to receive protected time ($\mathrm{p}<0.001$); median calculated work hours/year: 2112 hrs (IQR: 1287-2990; p<0.001)

Clinician Educators engaged in more teaching and research ($\mathrm{p}<0.001$)

Clinical Experts engaged in more teaching and research ($\mathrm{p}<0.001$)

Physician Scientists reported the highest research effort ($p<0.001$)

		Clinician	Administrative	p-value	Clinical Educator	p-value	Clinical Expert	p-value	Physician Scientist	p-value
		$\mathrm{n}=711$	$\mathrm{n}=205$		$\mathrm{n}=89$		$\mathrm{n}=64$		$\mathrm{n}=135$	
$\stackrel{\oplus}{E} \underset{i}{E}$	Reported Percent Time									
	\% Clinical	74\%	43\%	<0.001	55\%	<0.001	51\%	<0.001	31\%	<0.001
	\% Admin	10\%	33\%	<0.001	13\%	NS	14\%	NS	9\%	NS
	\% Teaching	6\%	8\%	NS	17\%	<0.001	11\%	0.001	7\%	NS
	\% Research	3\%	8\%	<0.001	9\%	<0.001	15\%	<0.001	48\%	<0.001
	\% Clinincal	3\%	6\%	0.007	8\%	<0.001	12\%	<0.001	23\%	<0.001
	\% Bench	0\%	1\%	NS	0\%	NS	0\%	NS	19\%	<0.001
	\% Health Service	0\%	1\%	NS	1\%	NS	3\%	0.004	6\%	<0.001
	\% Other Med Activities	3\%	5\%	0.013	4\%	NS	7\%	0.001	3\%	NS
	\% Other Activities	1\%	2\%	NS	1\%	NS	2\%	NS	0\%	NS
	Estimated Professional Hours									
	Clinical Time	1728 (1072-2304)	1134 (654-1652)	<0.001	1299 (915-1875)	0.007	1394 (968-1773)	NS	1032 (603-1412)	<0.001
	Research Time	0 (0-70)	105 (0-303)	<0.001	89 (0-276)	<0.001	174 (0-326)	<0.001	1492 (771-2447)	<0.001
	Admininstrative Time	320 (140-800)	1200 (600-2080)	<0.001	420 (190-850)	NS	540 (245-1200)	NS	320 (125-800)	NS
	Teaching Time	240 (60-600)	386 (120-934)	0.004	600 (240-1080)	<0.001	450 (180-710)	NS	230 (110-758)	NS
	Total Professional Time	2112 (1287-2990)	2780 (1878-3820)	<0.001	2382 (1600-3467)	NS	2455 (1674-3756)	NS	3031 (2109-4251)	<0.001

Administrators reported more protected time; median calculated work hours/year:

2780 hrs (IQR: 1878-3820; p<0.001)
...and highest median calculated work hours/year: 3031 hrs (IQR: 2109-

4521; $p<0.001$)

Conclusions

Compared to neonatologists who identified as Clinicians:

- Administrators/Leaders had fewer clinical obligations, engaged in more research, held higher academic rank, had more administrative time, and received the highest compensation.
- Clinical Educators and Clinical Experts participated in more research and medical education, held higher academic rank, and received lower compensation.
- Physician-Scientists had the lowest clinical time commitment, expended the greatest effort in research, held higher academic rank, and received lower compensation.

Conclusions

- Neonatologists can embrace several career paths focused on different missions
- Institutions and organizations should understand the value that each career path brings and seek to support optimal professional development for all

A Gender Effect:

Comparison of Gender Across Three Career Phases of a Neonatologist

Objective \#2:

- The objective of this analysis was to evaluate for gender inequity among neonatologists across 3 career phases:
- Early Career:
- Mid-Career:
- Later Career: ≤ 10 years from fellowship
11-20 years from fellowship
> 20 years from fellowship

Hypothesis

- Female gender identity may be associated with fewer publications, fewer key leadership roles, and decreased cash compensation

Methods

- The survey included questions about professional duties, social factors, and compensation.
- Bivariate cross-sectional comparisons were performed using JMP 16.1.0 by SAS (Cary, NC) and included:
- T-test of means of normally distributed data;
- Wilcoxon test of medians of data with skewed distribution;
- Chi-square analysis for categorical data
- This analysis included a subset of 941 full-time respondents reporting gender identity and fellowship year

Consort Diagram

Respondent Characteristics

Table 1: Respondent Characteristics	Survey of Sections
Sample Size	941
On Academic Track (Yes)	669 (71\%)
Gender Identity	
Male	387 (41\%)
Female	554 (59\%)
Ethnic and Racial Identity	
Hispanic/Latinx	66 (7\%)
Asian	165 (18\%)
Native Hawaiian/Pacific Islander	1 (0\%)
Black/African American	40 (4\%)
Middle Eastern/North African	22 (2\%)
American Indian/Alaska Native	2 (0\%)
White	664 (71\%)
Other	24 (3\%)
Declined	31 (3\%)
Age	
31-35	63 (7\%)
36-40	149 (16\%)
41-45	166 (18\%)
46-50	140 (15\%)
51-55	103 (11\%)
56-60	102 (11\%)
61-65	102 (11\%)
66-70	64 (7\%)
71 years or older	28 (3\%)

Table 1: Respondent Characteristics	Survey of Sections
Medical School	
United States	722 (77\%)
Canada	7 (1\%)
Caribbean	25 (3\%)
Other	180 (19\%)
AAP Membership	
AAP only	95 (10\%)
Both AAP and SONPM	754 (80\%)
Neither the AAP nor SONPM	91 (10\%)
AAP District Location	
District I	61 (7\%)
District II	62 (7\%)
District III	109 (12\%)
District IV	96 (11\%)
District V	79 (9\%)
District VI	69 (8\%)
District VII	138 (15\%)
District VIII	109 (12\%)
District IX	100 (11\%)
District X	89 (10\%)

Results: Comparison of Clinical Duties

Minimal differences were seen in clinical duties across gender and career phases of neonatologists

		Early Career			Mid-Career			Later Career		
		Male	Female	p-value	Male	Female	p-value	Male	Female	p-value
		$\mathrm{n}=51$ (24\%)	$\mathrm{n}=163$ (76\%)		$\mathrm{n}=100$ (31\%)	$\mathrm{n}=222$ (69\%)		$\mathrm{n}=236$ (58\%)	$\mathrm{n}=169$ (42\%)	
	Weekday (Monday through Friday)	75 (50-106)	90 (50-120)	NS	70 (28-110)	75 (50-100)	NS	70 (38.5-107.5)	75 (47.5-120)	NS
	Weeknight (night of Monday through Friday)	24 (20-40)	28 (16-40)	NS	$25(12-45)$	25 (15-48)	NS	27 (10-50)	30 (15-52.25)	NS
	Weekend day (Saturday or Sunday)	24 (17-30)	24 (14.75-34)	NS	19 (12-34.25)	20 (12-26)	NS	21.5 (12-30)	24 (14-30)	NS
	Weekend nights \dagger (night of Saturday or Sunday)	12 (10-20)	12 (10-20)	NS	12.5 (8-20)	12 (8-24)	NS	12 (4-23.5)	14 (10-25)	0.011
	Clinical Hours	1602 (988.5-2010)	1582 (1144-2304)	NS	1594 (754-2110)	1564 (989-2098.5)	NS	1325 (656-2037)	1376 (832-2163)	NS
	Average Daily Census									
	Critical Care	9 (5.5-10)	9.5 (5-12)	NS	$8(4.25-10)$	8 (5-12)	NS	5 (3-10)	6 (4-10)	NS
	Intensive Care	10 (6-12)	10 (5-11)	NS	$9(5-12)$	10 (5.25-12)	NS	$9(5-10)$	10 (5-14.75)	NS
	Non-Critical Care	0 (0-5)	$0(0-3)$	NS	$0(0-2)$	0 (0-3)	NS	$1(0-5)$	0 (0-5)	NS
	Normal Newborn	0 (0-0)	$0(0-1)$	NS	$0(0-3)$	$0(0-0)$	NS	0 (0-4)	$0(0-3)$	NS
	Total Rounding Census	20 (17.75-25)	20 (16-25)	NS	20 (15.75-28.25)	20 (16-25)	NS	20 (14-26)	20 (15-28.25)	NS
	Level nursery where most time spent									
	Level 4	25 (50\%)	80 (50\%)	NS	51 (51\%)	104 (47\%)	NS	100 (43\%)	67 (41\%)	NS
	Level 3	24 (48\%)	72 (45\%)	NS	43 (43\%)	108 (49\%)	NS	106 (46\%)	78 (47\%)	NS
	Level 2	1 (2\%)	9 (6\%)	NS	6 (6\%)	8 (4\%)	NS	23 (10\%)	17 (10\%)	NS
	Level 1	0 (0\%)	0 (0\%)	NS	0 (0\%)	0 (0\%)	NS	3 (1\%)	3 (2\%)	NS
	Have Outpatient Duties									
	Yes	12 (24\%)	25 (16\%)	NS	20 (21\%)	46 (21\%)	NS	41 (18\%)	29 (18\%)	NS
	Outpatient Days	15.5 (10-27.75)	22 (10-44.75)	NS	11 (5-23.75)	15.5 (6-37)	NS	12 (7-35)	29 (7.25-50)	NS

Results: Administrative and Leadership Duties

No significant gender differences were seen in administrative or leadership duties for neonatologists across career phases

		Early Career			Mid-Career			Later Career		
		Male	Female	p-value	Male	Female	p-value	Male	Female	p-value
		$\mathrm{n}=51$ (24\%)	$\mathrm{n}=163$ (76\%)		$\mathrm{n}=100$ (31\%)	$\mathrm{n}=222$ (69\%)		$\mathrm{n}=236$ (58\%)	$\mathrm{n}=169$ (42\%)	
	Administrative Time									
	Weeks	6 (2-15)	$5(2-12)$	NS	8 (4-23.75)	7.5 (3.25-20)	NS	12 (5-30)	12 (5-25)	NS
	Internal Roles									
	Chair, Institutional Committee	1 (2\%)	2 (1\%)	NS	5 (5\%)	8 (4\%)	NS	32 (14\%)	24 (14\%)	NS
	Medical/Program Director	8 (16\%)	29 (20\%)	NS	43 (44\%)	88 (41\%)	NS	96 (41\%)	75 (45\%)	NS
	Division Chief	2 (4\%)	0 (0\%)	NS	8 (8\%)	12 (6\%)	NS	47 (20\%)	24 (14\%)	NS
	Department Chair	2 (4\%)	4 (3\%)	NS	1 (1\%)	3 (1\%)	NS	14 (6\%)	13 (8\%)	NS
	None	26 (52\%)	80 (55\%)	NS	31 (32\%)	56 (26\%)	NS	47 (20\%)	39 (23\%)	NS
	External Roles									
	State Committee Chair	0 (0\%)	2 (1\%)	NS	6 (6\%)	3 (1\%)	NS	9 (4\%)	3 (2\%)	NS
	National Committee Chair	5 (10\%)	2 (1\%)	NS	3 (3\%)	14 (7\%)	NS	10 (4\%)	8 (5\%)	NS
	Inter-Institutional Collab Director	0 (0\%)	0 (0\%)	NS	1 (1\%)	1 (0\%)	NS	7 (3\%)	5 (3\%)	NS
	Internatioanl Collab Chair	0 (0\%)	0 (0\%)	NS	1 (1\%)	0 (0\%)	NS	2 (1\%)	0 (0\%)	NS
	None	34 (71\%)	105 (71\%)	NS	53 (56\%)	127 (60\%)	NS	129 (57\%)	89 (56\%)	NS

Results: Scholarly Work Across Career Phases

Gender identity was unevenly distributed		Early Career			Mid-Career			Later Career		
		Male	Female	n-value	Male	Female	n-value	Male	Female	p-value
		$\mathrm{n}=51$ (24\%)	$\mathrm{n}=163$ (76\%)		$\mathrm{n}=100$ (31\%)	$\mathrm{n}=222$ (69\%)		$\mathrm{n}=236$ (58\%)	$\mathrm{n}=169$ (42\%)	
	across career phases Yes	31 (61\%)	76 (48\%)	NS	50 (50\%)	125 (56\%)	NS	105 (45\%)	75 (46\%)	NS
	Annual Funding	$\begin{gathered} \$ 50,000 \\ (\$ 0-\$ 120,000) \end{gathered}$	$\begin{gathered} \$ 0 \\ (\$ 0-\$ 50,000) \end{gathered}$	NS	$\begin{gathered} \$ 0 \\ (\$ 0-\$ 150,000) \end{gathered}$	$\begin{gathered} \$ 15,000 \\ (\$ 0-\$ 125,000) \end{gathered}$	NS	$\begin{gathered} \$ 32,500 \\ (\$ 0-\$ 243,750) \end{gathered}$	$\begin{gathered} \$ 20,000 \\ (\$ 0-\$ 300,000) \end{gathered}$	NS
	Scholarly Productivity			Later career males were more Iikely to hold more principal authorships ($p=0.019$) and full professor appointments $(p=0.003)$						
	Paper submissions	3 (1-5.25)	$2(1-3)$				NS	$3(2-6)$	3 (1-6)	NS
	Publications in Past Year	2 (1-4)	$2(1-3)$				NS	$3(2-6)$	$3(1-5)$	NS
	Principal Authorship	$3.5(1.75-9.25)$	$2(1-5)$					10 (2.75-30)	$5(2-20)$	0.019
	Presentations	4 (3-8)	$4(2-6)$				IvS	5 (2-10)	$4(2-8)$	NS
	Academic Appointment									
	No	9 (18\%)	42 (26\%)					72 (31\%)	53 (31\%)	NS
	Yes (not tenure)	35 (69\%)	103 (63\%)	NS	63 (63\%)	141 (64\%)		121 (51\%)	88 (52\%)	
	Yes (tenure track)	6 (12\%)	13 (8\%)		12 (12\%)	26 (12\%)		37 (16\%)	24 (14\%)	
	Academic Rank						0.04			
	Instructor	2 (5\%)	11 (9\%)	0.048	2 (3\%)	9 (5\%)		10 (6\%)	6 (5\%)	0.003
	Assistant professor	30 (73\%)	97 (84\%)		24 (32\%)	69 (41\%)		21 (13\%)	30 (27\%)	
	Associate professor	5 (12\%)	5 (4\%)		30 (40\%)	71 (43\%)		31 (20\%)	35 (31\%)	
	Full professor	0 (0\%)	0 (0\%)		10 (13\%)	9 (5\%)		82 (52\%)	38 (34\%)	
	Adjunct	4 (10\%)	2 (2\%)		6 (8\%)	3 (2\%)		10 (6\%)	2 (2\%)	

Link to PDF of Tables
Early and mid-career females were more likely to hold assistant \& associate professor appointments
($p=0,048 ; p=0.04$, respectively)

Results: Comparison of Cash Compensation

Results: Comparison of Employer Benefits

Conclusions

- In this bivariate cross-sectional analysis of gender inequity across career phases, we found no meaningful differences in:
- Clinical duties
- Administrative roles
- Yet, we did identify meaningful differences in:
- Academic rank
- Financial compensation
- Future multivariate analysis will better explore independent influences and co-variates on gender identity across career phases

Assessment of the 2020

 COVID-19 Pandemic: Impact on the United States Neonatologist Workforce Objective \#3:-The objective of this analysis was to evaluate the effect of the COVID-19 pandemic on the professional and personal lives of neonatologists.

Hypothesis

- The COVID-19 pandemic significantly impacted work productivity of neonatologists in both research and clinical domains
- The COVID-19 pandemic negatively affected career advancement, compensation, and work-life integration of neonatologists

Methods

- The survey included questions about professional duties, the effects of COVID19, and social factors.
- Bivariate cross-sectional comparisons were performed using JMP 16.1.0 by SAS (Cary, NC) and included:
- T-test of means of normally distributed data;
- Wilcoxon test of medians of data with skewed distribution;
- Chi-square analysis of categorical data
- Analysis included the subset of 1490 full-time neonatologists who responded to the COVID-19 questions

Results: Respondent Characteristics

Link to PDF of Tables

Sample Size	1490
On Academic Track (Yes)	1008 (68\%)
Gender Identity	
Male	527 (42\%)
Female	712 (56\%)
Prefer to self-describe	1 (0\%)
Decline to respond	24 (2\%)
Racial Identity	
Hispanic/Latinx	93 (7\%)
Asian	203 (16\%)
Native Hawaiian/Pacific Islander	3 (0\%)
Black/African American	52 (4\%)
Middle Eastern/North African	28 (2\%)
American Indian/Alaska Native	4 (0\%)
White	890 (71\%)
Other	33 (3\%)
Declined	73 (5\%)
Age	
31-35	83 (7\%)
36-40	185 (15\%)
41-45	197 (16\%)
46-50	172 (14\%)
51-55	139 (11\%)
56-60	134 (11\%)
61-65	130 (11\%)
66-70	111 (9\%)
71 years or older	76 (6\%)

Medical School	
United States	$980(78 \%)$
Canada	$8(1 \%)$
Caribbean	$36(3 \%)$
Other	$235(19 \%)$
AAP Membership	AAP onlv
	$142(10 \%)$
Both AAP and SONPM	$1169(79 \%)$
Neither the AAP nor SONPM	$167(11 \%)$
AAP District Location	
District I	$91(6 \%)$
District II	93 (7\%)
District III	$160(11 \%)$
District IV	$144(10 \%)$
District V	$114(8 \%)$
District VI	$194(14 \%)$
District VII	$175(12 \%)$
District VIII	$151(11 \%)$
District IX	$150(11 \%)$
District X	$152(11 \%)$

Results: Professional Activities Across Career Types

Link to PDF of Tables

Results: Professional Time and Compensation Across Career Types

	Factors Impacted by COVID-19		Overall	No Appointment	Academic Appointment	p-value
			$\mathrm{n}=1490$	$\mathrm{n}=482$	$\mathrm{n}=1008$	
		Retired earlier	7 (0\%)	2 (0\%)	5 (1\%)	NS
		Stayed longer	60 (4\%)	18 (4\%)	42 (4\%)	NS
20\% of all neonatologists experienced career impacts		Changed jobs	61 (4\%)	17 (4\%)	44 (4\%)	NS
		Temporarily left	30 (2\%)	13 (3\%)	17 (2\%)	NS
		Fewer opportunities for promotion	97 (7\%)	21 (4\%)	76 (8\%)	0.011
		Other	89 (6\%)	31 (6\%)	58 (6\%)	NS
		No change	1185 (80\%)	390 (82\%)	795 (80\%)	NS
Eldercare concerns was a significant stressor		More time with Family	713 (51\%)	214 (48\%)	499 (53\%)	NS
		Less time with Family	254 (18\%)	90 (20\%)	164 (17\%)	NS
		Childcare Struggle	254 (18\%)	90 (20\%)	164 (17\%)	NS
		Eldercare Struggle	303 (22\%)	78 (17\%)	225 (24\%)	0.004
		Increased Stress with Significant Other	429 (31\%)	143 (32\%)	286 (30\%)	NS
		Decreased stress with Significant Other	78 (6\%)	19 (4\%)	59 (6\%)	NS
		Self quarantine	146 (11\%)	42 (9\%)	104 (11\%)	NS
		More Teaching Children	225 (16\%)	70 (16\%)	155 (17\%)	NS
		Other	176 (13\%)	65 (15\%)	111 (12\%)	NS

Link to PDF of Tables

Conclusions

The COVID-19 pandemic disrupted the lives of neonatologists on both personal and professional levels within the following domains:

- Increased work hours and remote work among academically appointed neonatologists
- Reduction in compensation and opportunities for promotion among all respondents
- Work-life integration resulting in increased time with family for all respondents, accompanied with increased interspousal, eldercare, and childcare stressors
-Significant delays in research progression resulting in delayed paper and grant submissions and delayed initiation of planned projects

2020 AAP Trainees and Early Career Neonatologists Workforce Survey

Anisha Bhatia, MD, FAAP
Matt Nestander, MD, FAAP
Ashley Lucke, MD, FAAP
Sarah M. Bernstein, MD, MHA, FAAP
Shiva Gautam, PhD
Eric Horowitz, MD, FAAP
Colby Day, MD, FAAP

Statement of Problem

- Employment characteristics and compensation for early career neonatologists (ECN) within 7 years of fellowship graduation are poorly defined
- Formal education on neonatology career types and expected compensation is lacking in fellowship programs
- Significant knowledge gaps exist in understanding roles traditionally dichotomized as 'academic' and 'non-academic'

Factors Influencing Compensation of Early Career Neonatologists Objective:
-The objective of this analysis was to define compensation and related employment characteristics of early career neonatologists

Methods

- Study Design:

- Voluntary anonymous 61-question survey instrument was developed and approved with IRB exemption
- Questions refined using convenience sampling validation \& comparison to previous survey studies
- Administered in 2020 via electronic communication over a 4-month period with 2 reminder emails
- Questions addressed clinical service time, NICU level of acuity, protected research time, financial compensation, benefits, availability of advanced degree education (i.e. master's degrees), and promotion requirements of university-affiliated and non-university affiliated practices

Methods

- Population:

- TECaN members within 7 years of completion of fellowship training (2014-2020), a pre-defined time frame specific to Early Career Neonatologists (ECNs)
- Statistical Analysis:
- Univariate and multivariate quantile regressions were performed using SAS Software version 9.4
- Multivariate analysis was adjusted for the effect of the following factors:
- Location of medical training (e.g. United States versus international)
- Gender identity
- Fellowship graduation year
- Academic appointment \& rank
- Geographical region
- Practice group type
- Number of neonatologists in practice group
- Clinical schedule \& type of call taken

Results

Study population

($\mathrm{n}=348 / 1302$; 26.7\% Response Rate)

Physician Characteristics	n (\%)	Physician Characteristics	n (\%)
Graduation Year		Region of Employment	
2020	87 (25.0)	Great Lakes ($\mathrm{OH}, \mathrm{MI}, \mathrm{IN}, \mathrm{IL}, \mathrm{WI}, \mathrm{MN}$)	49 (14.0)
2019	63 (18.1)	Mid-Atlantic (WV, VA, DE, MD, DC, PA, NJ, NC)	49 (14.0)
2018	68 (19.5)	Southeast (SC, GA, FL, AL, MS, LA, TN, KY)	35 (10.1)
2017	50 (14.4)	Northeast (ME, NH, VT, MA, CT, NY, RI)	50 (14.4)
2016	28 (8.0)	North Central (IA, MO, KS, NE, SD, ND)	24 (6.9)
2015	27 (7.8)	Southwest (AZ, UT, CO, NM, NV,TX, OK, AR)	27 (7.8)
2014	25 (7.2)	West (CA, AK, HI, MT, WY, ID, OR, WA)	42 (12.1)
Gender Identity		No Response	72 (20.7)
Female	270 (77.6)	Group Type	
Male	76 (21.8)	University Affiliated	160 (46.0)
No response	2 (0.6)	Private Practice	78 (22.4)
Medical School Country		Hybrid	61 (17.5)
United States	256 (73.6)	Hospital Employed	42 (12.1)
Caribbean	19 (5.5)	Government/Military/Other	7 (2.0)
Canada/Other	73 (20.9)		

Results

Academics

Physician Characteristics	
$n(\%)$	
Academic Appointment	
Yes, Non-Tenure Track Appointment	$200(57.5)$
Yes, Tenure Track Appointment	$33(9.5)$
No Academic Appointment	$110(31.6)$
No Response	$5(1.4)$
Academic Rank	
Instructor	$33(9.5)$
Adjunct Professor	$12(3.4)$
Assistant Professor	$172(49.4)$
Associate Professor	$8(2.3)$

Results

Practice Description

Employment Characteristics	Sample, n (\%)	University Affiliated, n (\%)	Non-University Affiliated, n (\%)	P-value
Number of Neonatologists				
1-2	10 (2.9)	0 (0)	10 (100)	
3-6	58 (16.7)	12 (3.4)	46 (13.2)	<. 0001
7-10	71 (20.4)	22 (6.3)	49 (14.1)	0.0014
11-14	57 (16.4)	39 (11.2)	18 (5.2)	0.0054
>14	133 (38.2)	81 (23.3)	52 (14.9)	0.0119
Median Coverage Assignment Defined by NICU Acuity Level (IQR)				
Level 1	1 (0-10)	0 (0-10)	5 (0-20)	
Level 2	20 (5-32)	10 (0-30)	20 (6-33)	0.1783
Level 3	60 (40-100)	50 (25-75)	80 (50-100)	<. 0001
Level 4	50 (20-90)	70 (42-100)	20 (0-62)	<. 0001

Results

Employment Characteristics	Sample n (\%)	University Affiliated n (\%)	Non-University Affiliated n (\%)	P-value	
Structure of Clinical Time 1 Week Block	80 (23.0)	30 (8.6)	50 (14.4)	0.0253	
2 Week Block	126 (36.2)	96 (27.6)	30 (8.6)	<. 0001	
3 Week Block 4 Week Block Some Days On/Off Other I Don't Know	$\begin{aligned} & 17(4.9) \\ & 10(2.9) \\ & 69(19.8) \\ & 15(4.3) \\ & 3(0.9) \end{aligned}$	$\begin{aligned} & 10(2.9) \\ & 5(1.4) \\ & 7(2.0) \\ & 2(0.6) \\ & 2(0.6) \end{aligned}$	$\begin{aligned} & 7(2.0) \\ & 5(1.4) \\ & 62(17.8) \\ & 13(3.7) \\ & 1(0.3) \end{aligned}$	$\begin{aligned} & 0.4669 \\ & 1 \\ & <.0001 \\ & 0.0045 \\ & 0.5637 \end{aligned}$	
Call Type In-house Call Both In-house and Home Home Call No Call	$\begin{aligned} & 144 \text { (41.4) } \\ & 110(31.6) \\ & 70(20.1) \\ & 5(1.4) \end{aligned}$	$\begin{aligned} & 70(20.1) \\ & 46(13.2) \\ & 37(10.6) \\ & 1(0.3) \end{aligned}$	$\begin{aligned} & 74 \text { (21.3) } \\ & 64 \text { (18.4) } \\ & 33 \text { (9.5) } \\ & 4(1.1) \end{aligned}$	$\begin{aligned} & 0.7389 \\ & 0.0861 \\ & 0.6326 \\ & 0.1797 \end{aligned}$	Practice Description

Results

Figure 1: Quantile Distribution of Salary

Results

Figure 2: Factors Significantly Associated with Compensation of ECNs

Results

- Key Multivariate Analysis Findings:
- Highest earning median income were 2016 fellowship graduates (\$250,000; IQR: $\$ 215$ 000 - $\$ 290,000 ; p=0.017$) compared to 2020 graduates ($\$ 216,000 ;$ IQR: $\$ 200,000-$ $\$ 235,000)$
- Estimated median salary increased by:
- 12% with promotion from Instructor ($\$ 196,000 ; 95 \%$ CI: $\$ 178,286$ - $\$ 213,714$) to Assistant Professor (\$220,000; 95\% CI: \$215,470-\$224,530; p<0.001)
- 18% with promotion from Assistant to Associate Professor (\$260,000; 95\% CI: \$220,043-\$299,957; $\mathrm{p}=0.027$)

Conclusions

- For early career neonatologists, salary is correlated with years of experience and academic rank
- Increased formalized education is needed on employment models for optimizing career fulfillment of graduating fellows and early career neonatologists
- No significant gender difference was noted in earnings

Future Directions

- Professional Advocacy:

Staffing and Workload in Neonatology (SWAN) Taskforce

- A new AAP SoNPM workgroup comprised of leaders in clinical staffing and productivity
- Co-Leads: Drs. De-Ann Pillers and Patrick McNamara
- Members: Drs. Anisha Bhatia, David Burchfield, Scott Duncan, Eric Horowitz, Mark Hudak, Sunny Juul, Satyan Lakshminrushimha, Lily Lou, Mark Mercurio, Steve Olsen, Jean Pallato, Renate Savich, Gautham Suresh, and Trent Tipple
- Goals:

1. To best define clinical FTE for academic neonatologists.
2. To better characterize overall FTE and understand underlying driving forces

Future Directions

- Professional Advocacy: All Pathways Group

- A new AAP SoNPM Working Group focused on understanding the wide variety of pathways for neonatal intensivists and help meet the professional needs of all Section members who desire opportunities that make their career more fulfilling and may not be readily available in a non-academic setting
- Co-Leads: Drs. Clara Song and Lily Lou
- All Pathways aims to enhance opportunities in the following areas:
- Local and national leadership
- Research/QI/Benchmarking, Teaching
- Advocacy
- How to evaluate a practice opportunity
- Non-conventional practice opportunities (locums, volunteer, etc.)
- Late career opportunities
- Global health opportunities
- Networking

Future Directions

- Professional Advocacy: Representation and Equity In Neonatology (REIN)

A new AAP SoNPM Interest Group focused on enhancing the workforce diversity of neonatology by creating a community for Underrepresented in Medicine (URiM) neonatologists and allies

- Co-Leads: Drs. Elizabeth Bonachea, Michelle-Marie Peña, \& Uchenna Anani
- Goals:
- Foster community among URiM trainees and neonatologists across the country
- Support the recruitment, retention, and promotion of URiM physicians in neonatology
- Promote entry of URiM physicians into the NPM pipeline

Future Directions

- Professional Advocacy: Clinical Leaders Group

A new AAP SoNPM Interest Group focused on addressing gaps in training and resource availability for the clinical leaders

- Co-Leads: Drs. Munish Gupta and Jessica Davidson
- Goals:
- Develop clinical leaders in the domains of quality assurance and improvement, patient safety, and clinical guidelines

Thank you for your attention!

For more information about the neonatologist workforce, please visit:
www.aap.org/DOCISIn

Special thanks for generous support from:

- TECaN Executive Council Collaborators
- AAP Pediatric Workforce Survey of Sections Neonatology Collaborators
- American Academy of Pediatrics Section on NeonatalPerinatal Medicine
- American Academy of Pediatrics Committee on Pediatric Workforce

